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Boundary-layer damping of one-dimensional gravity waves of slowly varying 
amplitude a ( t ) ,  characteristic wavenumber k, and characteristic frequency w in 
water of depth d and kinematic viscosity v is calculated for a < d ,  d < Ilk and 
(2v/w)* < d .  General results are given for the temporal evolution of the power 
spectral density determined by either a Fourier-integral (spatially aperiodic) or 
Fourier-series (spatially periodic) representation of the wave. Solitary and cnoidal 
waves are considered as examples. Keulegan's ( 1  948) inverse-fourth-power decay 
for the solitary wave is recovered, and the numerical parameter therein is evalu- 
ated by reduction to aRiemann zeta function. Auniversal decay curve is obtained 
for the Stokes-scaled amplitude X = a/k2d3 of the cnoidal wave as a function of 
the boundary-layer-scaled time (vw)*t/d; the result is both more flexible and more 
compact than that obtained by Isaacson (1976).  The decay is within 5 % of that 
for a solitary wave (inverse fourth power) for S > 2 or that for an infinitesimal 
wave (exponential) for S < 2 .  An analytical approximation with a maximum 
error of less than 1 yo is obtained by joining an asymptotic approximation for 
S > 1 to the exponential approximation for X < 1.  

1. The dissipation equations 
We consider viscous damping of one-dimensional gravity waves of amplitude 

a( t ) ,  characteristic length l / k ,  and characteristic frequency w in a liquid of depth 
d and kinematic viscosity v on the assumptions that 

a < d ,  d 4 l / k ,  6 = (2v/w)* < d ,  ( 1 . 1  a-c) 

which individually imply weak nonlinearity, weak dispersion and weak dissipa- 
tion (in a boundary layer or boundary layers of thickness 8)  and jointly imply 
that a ( t )  is slowly varying (Iul < wa). 

Dissipation of the elementary progressive wave 

~ ( x ,  t )  = a ( t )  cos{k(z-ct)}, w = kc, c = (gd)*, ( 1.2 a-c) 

da2/dt = - 2ya2, (1.3) 

where y = (vo/8d2)*[1 + (2d/b)  + V] ,  (1 .4)  

in a channel of breadth b and depth d is governed by (cf. Landau & Lifshitz 1959, 
§§24 ,  25; Miles 1967) 

and V is a surface-contamination parameter that has a maximum possible value 
of 2 and may be approximated by 1 for water that has been allowed to stand for 
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a few hours in a typical wave tank. The dependence of $? on frequency and the sur- 
face parameters is known theoretically (Miles 1967); however, the required data 
are typically unavailable, and we therefore regard $? as an empirical constant. 

We generalize (1.2) by admitting weak nonlinearity and weak dispersion in 
accordance with the restrictions ( l . l ) ,  such that either 

or 

~ ( z ,  t )  = (27r)-l A(K,  t ) e i K z d K  (1.5a) J_S, 
m 

q(z , t )  = A,(t)einKz, 
--m 

where A and A ,  are slowly varying, complex amplitudes, 

= x-l; cdt, 

(1.5b) 

and c is a slowly varying phase speed that may differ from c by O(a/d)  but is 
independent of either K or n [we could choose c = c without loss of generality, 
thereby absorbing all of the slow variation of phase into the complex amplitude, 
but the representations (1.5a, b )  are more convenient]. The reality of v implies 
the complex-conjugate relations 

A( - K ,  t )  = A*(K, t ) ,  A-,(t) = AZ(t), (1.7 a, b )  

whilst conservation of mass implies A,  = 0 if q is measured from the quiescent 
free-surface level. The power spectral density is either IA la (continuous) or 
(discrete); accordingly, the required generalization of (1.3) is either 

or 

(1.8a) 

(1.8b) 

where a E (kd) - iy  = ( ~ ~ / 8 d ~ ) * [ l + ( 2 d / b ) + % ] .  (1.9) 

The approximations (1.8a, b ) ,  which follow directly from the definition of 
power spectral density, also may be derived from the equations of motion through 
either the method of averaging (over Z) or the method of multiple scales (cf. O t t  
& Sudan 1970).t They remain equally valid if t is replaced by x/c ,  as may be more 
convenient for progressive-wave calculations. 

We apply the preceding results to solitary and cnoidal waves in 5s 2 and 3 by 
invoking the inviscid calculation of ~ ( x ,  t )  as a first approximation, in which a2 
(qua measure of the wave energy) is conserved, and then calculating the decay of 
a(t) from either (1.8a) or (1.8b). This procedure neglects both the dissipative and 
dispersive effects of viscosity on wave form (as opposed to wave amplitude) and 
therefore requires (1.1 c) to be replaced by the stronger restriction 6 4 k2d3. 

therein, by invoking the Parseval and convolution theorems for Fourier integrals. 
t Keulegan (1948) derives a result that may be identified with (1.8a), with %= 0 
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2. Solitary wave 

(Lamb 1932, $252, after invoking a < d )  
The profile and phase speed of a solitary wave of amplitude a are given b y  

T ( s , t )  = asech2{(3a/4d3)*s}, c = c{ l+ ( 4 2 4 ) .  (2.la, b )  

The Fourier transform of 7 is 

A = + n d 3 ~  cosech{n(d3/3a)*~}. (2.2) 

a( t )  = ao[l +C(ao/d)tat]-4, (2.3) 

Substituting (2.2) into (1.8a) and integrating the resulting differential equation 
yields 

where (see appendix A for evaluation of integrals) 

s,” x% cosech2 x dx 
(2.4) 

- - r(f)C(#) = 0.2372, C =  
3%i-*~0mx2 cosech2xdx 3 Q ( W r ( 3 )  C(2) 

and 5 is the Riemann zeta function [6(2) = in2, C(Q) = 1.341491. 
The result (2.3) merely confirms that given by Keulegan (1948), which is 

equivalent to (2.3) with C = 0-236 [the discrepancy between this value and (2.4) 
is perhaps smaller than might have been expected, since Keulegan’s calculation 
of C involved the numerical evaluation of a double infinite integral]. 

3. Cnoidal wave 
The profile and phase speed of a cnoidal wave of amplitude a and phase speed 

c are given by Lamb (I 932, $253) 

(3.1 b, c )  

where en is a Jacobi elliptic function of modulus m, K and E are complete elliptic 
integrals of the first and second kinds, m’ = (1 - m2)* is the complementary 
modulus, a and m are related by the periodicity equation 

a/(k2d3) = (4/3n2)m2K2(m) = S(m), 

A, = +k2d3np(i - p ) - 1  (A0 = 01, (3.3) 

where q = exp { - rE(m’)/K(m)). (3.4) 

yt = T‘(S) - T(&), 

(3.2) 
and AS is a Stokes-scaled amplitude. The Fourier-series expansion of 7 (c f .  Cayley 
1895, $384) yields 

Substituting (3.3) into (1 .8b )  and integrating the resulting differential equation 

(3.5) 

yields 
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where 
d "  - I; &p( 1 - p ) - 2  

1 

T(S)  = sp(6)P(d(% P(q) = "Pml 3 (3,6a, b )  
2 C ,5/2q'h( 1 - qZn)-2 

1 

q(S) is implicitly determined by (3.2) and (3.4), So is the initial value of S ,  and 
a(t)/ao = S/So. The upper limit of integration in (3.6a) has been chosen to yield 
T + O f o r S f o o ( q f i ) .  

Lettingm3.0 (SC O)in(3.2)and(3.4)andinvoking (AS17.3.11)and(AS17.3.21) 
[the prefix AS refers to an entry in Abramowitz & Stegun (1964), wherein m 
is equivalent to m2 herein] yields q-+&S, after which q3.0 in (3.6b) yields 
P- t  l / q .  Separating out the corresponding logarithmic singularity in (3.6a) then 
yields 

T(S)  = T,-lnX+O(S) (SJO), (3.7a) 

Tl = In (9) + [F(q) -q-l]dq. (3.7b) where 

Numerical integration yields Tl = 3.939. Higher approximations can be obtained 
by expanding T(S)  + In S in powers of S but prove to be numerically inefficient; 
e.g. the next term in the expansion ( 3 . 7 ~ ~ )  is $8. 

Letting m f  I in (3.2) and invoking (AS17.3.14) yields S-t (4/3n2)ln2 (4/m'); 
letting m f 1 in (3.4) then yields 

lol 

q N exp { - n(3S)-4} [I + O (exp { - n(3S)*))l (S t m), (3.8) 

which is in error by less than 3% (0 .5%) for S > 1 (S =- 1.5). Invoking the 
Euler-Maclaurin approximation for the sums in (3.6 b )  and combining the result- 
ing approximation to T with (3.8), we obtain the asymptotic expansion (see 
appendix B for details) 

T N 4*21643-3[1- 0*1225S-*+ 0*0805P3- 0-0197S-%+O(S-~)]. (3.9) 

The function T ( S )  provides the entire family of solutions for ./ao with So as 
the family parameter. Numerical values, determined by computer integration of 
(3.6), are plotted in figure 1. The approximation (3.7a), which is equivalent to the 
exponential decay of the linear approximation, is in error by less than 1 yo for 
S < 1 and by less than 5 % for S < 2. The approximation (3.9) is in error by less 
than 0.2% for S > 1; the dominant term therein, which is equivalent to the 
inverse-fourth-power decay of the solitary wave, is in error by less than 5 % for 
S > 2. Joining (3.9) to (3.7a) a t  S = 1 therefore yields an analytical approxima- 
tion with a maximum error of less than 1 yo. 

The results obtained in this section are basically equivalent to those recently 
obtained by Isaacson (1976) but are both more compact and more flexible. In 
particular, Isaacson works with a numerical, rather than an analytical, repre- 
sentation of the Fourier coefficients of 7; accordingly, his results are essentially 
numerical and have to be calculated for each value of So. He gives graphical 
results for mgK2(mo) = Qn2So = 20 and 50, which agree with those in figure 1 
herein. 
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FIGURE 1. The universal decay function for cnoidal waves, as determined from (3.6a) by 
numerical integration. The particular result for a given initial value of S is obtained by 
measuring In (a/ao) vertically and yt = T - To horizontally from the point In S = In So, 
To = T(So). The asymptotes are T - 3.939-111 S (dot-dash curve) and T N &2168-3 
(dashed curve); see (3.7) and (3.9). 

This work was partially supported by the Physical Oceanography Division, 
National Science Foundation (NSF Grant DES74-23791) and by the Office of 
Naval Research (Contract N00014-76-C-0025). 

Appendix A. Evaluation of integrals in (2.4) 

Is = /om xs cosech2 x dx. 

The required integral is 
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Expressing cosech x in exponential form, introducing t = 2x, and integrating by 
parts yields 

I, = 4 x8e22(e2z- l)-2dx 
/Om 

Invoking the corresponding integral representation for the Riemann zeta 
function (AS 23.2.7) yields 

I ,  = 21-sr(s + 1) ~($1. (A 3) 

Appendix B. Asymptotic evaluation of (3.6) 
Introducing the change of variable 

m 

and Ym(y) = C nmq2n( 1 - q2n)-2 
n= 1 

m 00 

= y-m (ny)" e2nY(e2nY - 1)-2 3 y-m f,(ny) (B 2b) 
n-1 t&=l 

in (3.6) yields 
-1nq 

T = -'j ~ g ; ( ( Y ) / ~ ( Y ) ) c .  (B 3) 
2 0  

Invoking the Euler-Maclaurin approximation (AS23.1.30, with a = y, b = co, 
k = n - l )  

n= 1 

yields 

Evaluating the inh i t e  integral in (B 5) as in appendix A and expanding the 
finite integral in powers of y yields 

and 
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Substituting (B 6) into (B 3) and invoking the asymptotic approximation (3.8) 
for q [note that the error in that approximation is exponentially small compared 
with the errors in (B 6)] yields 

1” (B 7 a )  
1 - 0.20264~ + O(y7) n ( 3 S ) 4  

T = 1-56538/0 { 
1 - 0*13184@- 0.00071#- O*OOOOgy* 3 

n ( 3 ~ ) - *  
= 1*5653810 (y-fr- 0.20264yfr+ 0.13184~- O.O2672y2+0(y%))dy, 

(B 7 b )  
which yields (3.9). 
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